(0) Obligation:

JBC Problem based on JBC Program:
Manifest-Version: 1.0 Created-By: 1.6.0_16 (Sun Microsystems Inc.) Main-Class: GCD4
public class GCD4 {
public static int mod(int a, int b) {
while(a>=b && b > 0) {
a -= b;
}
return a;
}

public static int gcd(int a, int b) {
int tmp;
while(b > 0 && a > 0) {
tmp = b;
b = mod(a, b);
a = tmp;
}
return a;
}

public static void main(String[] args) {
Random.args = args;
int x = Random.random();
int y = Random.random();
gcd(x, y);
}
}


public class Random {
static String[] args;
static int index = 0;

public static int random() {
String string = args[index];
index++;
return string.length();
}
}


(1) JBC2FIG (SOUND transformation)

Constructed FIGraph.

(2) Obligation:

FIGraph based on JBC Program:
GCD4.main([Ljava/lang/String;)V: Graph of 188 nodes with 1 SCC.


(3) FIGtoITRSProof (SOUND transformation)

Transformed FIGraph SCCs to IDPs. Logs:


Log for SCC 0:

Generated 33 rules for P and 8 rules for R.


Combined rules. Obtained 2 rules for P and 0 rules for R.


Filtered ground terms:


1329_0_mod_LT(x1, x2, x3, x4, x5) → 1329_0_mod_LT(x2, x3, x4, x5)

Filtered duplicate args:


1329_0_mod_LT(x1, x2, x3, x4) → 1329_0_mod_LT(x3, x4)
1329_1_gcd_InvokeMethod(x1, x2, x3) → 1329_1_gcd_InvokeMethod(x1, x3)

Combined rules. Obtained 2 rules for P and 0 rules for R.


Finished conversion. Obtained 2 rules for P and 0 rules for R. System has predefined symbols.


(4) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))
(1): COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))
(2): 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(x1[2] > 0 && x1[2] <= x0[2], 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))
(3): COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3] - x1[3], x1[3]), x1[3]))

(0) -> (1), if ((x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0* TRUE)∧(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])))


(1) -> (0), if ((1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])))


(1) -> (2), if ((1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])))


(2) -> (3), if ((x1[2] > 0 && x1[2] <= x0[2]* TRUE)∧(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])))


(3) -> (0), if ((1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3] - x1[3], x1[3]), x1[3]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])))


(3) -> (2), if ((1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3] - x1[3], x1[3]), x1[3]) →* 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])))



The set Q is empty.

(5) IDPNonInfProof (SOUND transformation)

The constraints were generated the following way:
The DP Problem is simplified using the Induction Calculus [NONINF] with the following steps:
Note that final constraints are written in bold face.


For Pair 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1, x0), >(x1, 0)), >(x0, 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) the following chains were created:
  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])), COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1])) which results in the following constraint:

    (1)    (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1]) ⇒ 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))



    We simplified constraint (1) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (2)    (>(x0[0], 0)=TRUE>(x1[0], x0[0])=TRUE>(x1[0], 0)=TRUE1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))∧(UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥))



    We simplified constraint (2) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (3)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (3) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (4)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (4) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (5)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (5) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (6)    (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(2)bni_20 + (-1)Bound*bni_20] + [(2)bni_20]x1[0] + [bni_20]x0[0] ≥ 0∧[(-1)bso_21] ≥ 0)



    We simplified constraint (6) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (7)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(6)bni_20 + (-1)Bound*bni_20] + [(3)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)







For Pair COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1, x0), x0)) the following chains were created:
  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])), COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1])), 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) which results in the following constraint:

    (8)    (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])∧1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0]1, x1[0]1), x1[0]1) ⇒ COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))



    We simplified constraint (8) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (9)    (>(x0[0], 0)=TRUE>(x1[0], x0[0])=TRUE>(x1[0], 0)=TRUECOND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[0], x0[0]), x0[0]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))



    We simplified constraint (9) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (10)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (10) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (11)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (11) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (12)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (12) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (13)    (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[-1 + (-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (13) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (14)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(6)bni_22 + (-1)Bound*bni_22] + [(3)bni_22]x0[0] + [(2)bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] + x1[0] ≥ 0)



  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])), COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1])), 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) which results in the following constraint:

    (15)    (&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])∧1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]) ⇒ COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))



    We simplified constraint (15) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (16)    (>(x0[0], 0)=TRUE>(x1[0], x0[0])=TRUE>(x1[0], 0)=TRUECOND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[0], x0[0]), x0[0]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥))



    We simplified constraint (16) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (17)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (17) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (18)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (18) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (19)    (x0[0] + [-1] ≥ 0∧x1[0] + [-1] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[(-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (19) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (20)    (x0[0] ≥ 0∧x1[0] + [-2] + [-1]x0[0] ≥ 0∧x1[0] + [-1] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(2)bni_22 + (-1)Bound*bni_22] + [(2)bni_22]x1[0] + [bni_22]x0[0] ≥ 0∧[-1 + (-1)bso_23] + x1[0] + [-1]x0[0] ≥ 0)



    We simplified constraint (20) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (21)    (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(6)bni_22 + (-1)Bound*bni_22] + [(3)bni_22]x0[0] + [(2)bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] + x1[0] ≥ 0)







For Pair 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <=(x1, x0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) the following chains were created:
  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])), COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])) which results in the following constraint:

    (22)    (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3]) ⇒ 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (22) using rules (I), (II), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (23)    (>(x1[2], 0)=TRUE<=(x1[2], x0[2])=TRUE1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))∧(UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥))



    We simplified constraint (23) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (24)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (24) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (25)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (25) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (26)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (26) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (27)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(3)bni_24 + (-1)Bound*bni_24] + [(2)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)



    We simplified constraint (27) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (28)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(4)bni_24 + (-1)Bound*bni_24] + [(3)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)







For Pair COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0, x1), x1), x1)) the following chains were created:
  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])), COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])), 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) which results in the following constraint:

    (29)    (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])∧1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]) ⇒ COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))



    We simplified constraint (29) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (30)    (>(x1[2], 0)=TRUE<=(x1[2], x0[2])=TRUECOND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[2], x1[2]), x1[2]), x1[2]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))



    We simplified constraint (30) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (31)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (31) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (32)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (32) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (33)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (33) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (34)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(3)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (34) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (35)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(4)bni_26 + (-1)Bound*bni_26] + [(3)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)



  • We consider the chain 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])), COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])), 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) which results in the following constraint:

    (36)    (&&(>(x1[2], 0), <=(x1[2], x0[2]))=TRUE1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])∧1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3])=1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2]1, x1[2]1), x1[2]1) ⇒ COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))



    We simplified constraint (36) using rules (I), (II), (III), (IV), (IDP_BOOLEAN) which results in the following new constraint:

    (37)    (>(x1[2], 0)=TRUE<=(x1[2], x0[2])=TRUECOND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥NonInfC∧COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))≥1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[2], x1[2]), x1[2]), x1[2]))∧(UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥))



    We simplified constraint (37) using rule (POLY_CONSTRAINTS) which results in the following new constraint:

    (38)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (38) using rule (IDP_POLY_SIMPLIFY) which results in the following new constraint:

    (39)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (39) using rule (POLY_REMOVE_MIN_MAX) which results in the following new constraint:

    (40)    (x1[2] + [-1] ≥ 0∧x0[2] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[(-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (40) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (41)    (x1[2] ≥ 0∧x0[2] + [-1] + [-1]x1[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(3)bni_26 + (-1)Bound*bni_26] + [(2)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)



    We simplified constraint (41) using rule (IDP_SMT_SPLIT) which results in the following new constraint:

    (42)    (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(4)bni_26 + (-1)Bound*bni_26] + [(3)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)







To summarize, we get the following constraints P for the following pairs.
  • 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1, x0), >(x1, 0)), >(x0, 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1))
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))), ≥)∧[(6)bni_20 + (-1)Bound*bni_20] + [(3)bni_20]x0[0] + [(2)bni_20]x1[0] ≥ 0∧[(-1)bso_21] ≥ 0)

  • COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1, x0), x0))
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(6)bni_22 + (-1)Bound*bni_22] + [(3)bni_22]x0[0] + [(2)bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] + x1[0] ≥ 0)
    • (x0[0] ≥ 0∧x1[0] ≥ 0∧[1] + x0[0] + x1[0] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))), ≥)∧[(6)bni_22 + (-1)Bound*bni_22] + [(3)bni_22]x0[0] + [(2)bni_22]x1[0] ≥ 0∧[1 + (-1)bso_23] + x1[0] ≥ 0)

  • 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1, 0), <=(x1, x0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))), ≥)∧[(4)bni_24 + (-1)Bound*bni_24] + [(3)bni_24]x1[2] + [bni_24]x0[2] ≥ 0∧[(-1)bso_25] ≥ 0)

  • COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0, x1), x1)) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0, x1), x1), x1))
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(4)bni_26 + (-1)Bound*bni_26] + [(3)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)
    • (x1[2] ≥ 0∧x0[2] ≥ 0 ⇒ (UIncreasing(1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))), ≥)∧[(4)bni_26 + (-1)Bound*bni_26] + [(3)bni_26]x1[2] + [bni_26]x0[2] ≥ 0∧[1 + (-1)bso_27] + x1[2] ≥ 0)




The constraints for P> respective Pbound are constructed from P where we just replace every occurence of "t ≥ s" in P by "t > s" respective "t ≥ c". Here c stands for the fresh constant used for Pbound.
Using the following integer polynomial ordering the resulting constraints can be solved
Polynomial interpretation over integers[POLO]:

POL(TRUE) = 0   
POL(FALSE) = [3]   
POL(1329_2_MAIN_INVOKEMETHOD(x1)) = [-1] + [-1]x1   
POL(1329_1_gcd_InvokeMethod(x1, x2)) = [-1] + [-1]x2 + x1   
POL(1329_0_mod_LT(x1, x2)) = [-1] + [-1]x2 + [-1]x1   
POL(COND_1329_2_MAIN_INVOKEMETHOD(x1, x2)) = [-1] + [-1]x2   
POL(&&(x1, x2)) = [-1]   
POL(>(x1, x2)) = [-1]   
POL(0) = 0   
POL(COND_1329_2_MAIN_INVOKEMETHOD1(x1, x2)) = [-1] + [-1]x2   
POL(<=(x1, x2)) = [-1]   
POL(-(x1, x2)) = x1 + [-1]x2   

The following pairs are in P>:

COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))
COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))

The following pairs are in Pbound:

1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))
COND_1329_2_MAIN_INVOKEMETHOD(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[1], x1[1]), x1[1])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x1[1], x0[1]), x0[1]))
1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))
COND_1329_2_MAIN_INVOKEMETHOD1(TRUE, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[3], x1[3]), x1[3])) → 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(-(x0[3], x1[3]), x1[3]), x1[3]))

The following pairs are in P:

1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(&&(&&(>(x1[0], x0[0]), >(x1[0], 0)), >(x0[0], 0)), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))
1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(&&(>(x1[2], 0), <=(x1[2], x0[2])), 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))

At least the following rules have been oriented under context sensitive arithmetic replacement:

TRUE1&&(TRUE, TRUE)1
FALSE1&&(TRUE, FALSE)1
FALSE1&&(FALSE, TRUE)1
FALSE1&&(FALSE, FALSE)1

(6) Obligation:

IDP problem:
The following function symbols are pre-defined:
!=~Neq: (Integer, Integer) -> Boolean
*~Mul: (Integer, Integer) -> Integer
>=~Ge: (Integer, Integer) -> Boolean
-1~UnaryMinus: (Integer) -> Integer
|~Bwor: (Integer, Integer) -> Integer
/~Div: (Integer, Integer) -> Integer
=~Eq: (Integer, Integer) -> Boolean
~Bwxor: (Integer, Integer) -> Integer
||~Lor: (Boolean, Boolean) -> Boolean
!~Lnot: (Boolean) -> Boolean
<~Lt: (Integer, Integer) -> Boolean
-~Sub: (Integer, Integer) -> Integer
<=~Le: (Integer, Integer) -> Boolean
>~Gt: (Integer, Integer) -> Boolean
~~Bwnot: (Integer) -> Integer
%~Mod: (Integer, Integer) -> Integer
&~Bwand: (Integer, Integer) -> Integer
+~Add: (Integer, Integer) -> Integer
&&~Land: (Boolean, Boolean) -> Boolean


The following domains are used:

Boolean, Integer


R is empty.

The integer pair graph contains the following rules and edges:
(0): 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0])) → COND_1329_2_MAIN_INVOKEMETHOD(x1[0] > x0[0] && x1[0] > 0 && x0[0] > 0, 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[0], x1[0]), x1[0]))
(2): 1329_2_MAIN_INVOKEMETHOD(1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2])) → COND_1329_2_MAIN_INVOKEMETHOD1(x1[2] > 0 && x1[2] <= x0[2], 1329_1_gcd_InvokeMethod(1329_0_mod_LT(x0[2], x1[2]), x1[2]))


The set Q is empty.

(7) IDependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 2 less nodes.

(8) TRUE